

Classification of exposure and outcome

Patrick Souverein PhD

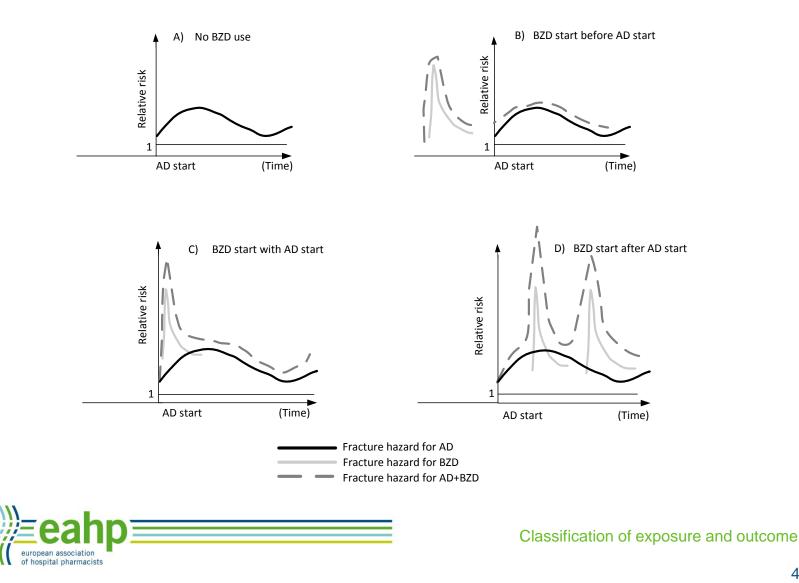
Utrecht Institute for Pharmaceutical Sciences, Utrecht University

EAHP Prague 13 Sept 2014

making the difference in medication

Conflict of Interest

Patrick Souverein has received unrestricted funding from the private-public funded Top-Institute Pharma (<u>www.tipharma.nl</u>, includes co-funding from universities, government and industry) and the EU Innovative Medicines Initiative (IMI)



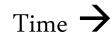
Pharmacoepidemiology

- Fundamental aspect: measuring the frequency of exposure and outcome
- However: measuring is not as straightforward as it seems...
 - Data quality/measurement errors
 - Definitions used
 - Limitations of codes

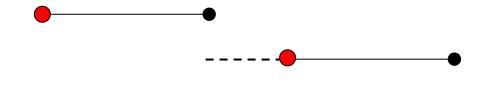
Exposure-outcome relations: hazard functions

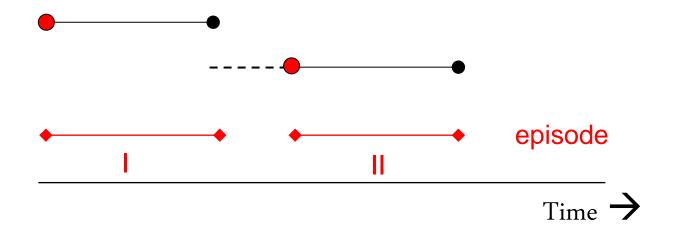
Exposure assessment

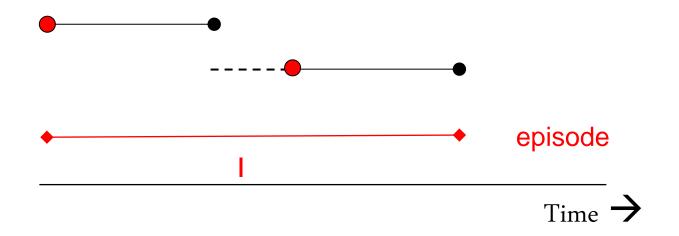
- How do we measure drug use?
 - Type of drug (classes? Individual products?)
 - Timing (current use? What does that mean?)
 - Dosage (DDD?)
 - Duration (of what?)
 - Acute effect vs long-term effect?
 - Patterns?
 - Adherence & persistence?



Dosage instructions

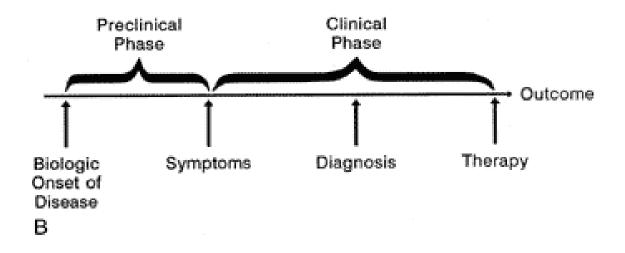

- as directed	-9
ONE PUFF TWICE A DAY OR AS DIRECTED	2000
1	1000
1 PUFF THREE TIMES A DAY	3000
1 - 2 PUFFS TWICE DAILY	3000
1 -2 DOSES ONCE OR TWICE A DAY	2500
1 -2 DOSES TWICE A DAY	3000
1 -2 DOSES TWICE DAILY	3000
1 -2 dose once or twice a day	2500
12 doses twice daily	3000
1 AS DIRECTED	1000
1 AT NIGHT	1000
1 BD	2000
1 BLISTER TWICE A DAY	2000
1 BLISTER TWICE DAILY	2000
1 CAP BD	2000
1 CAP FOUR TIMES DAILY	4000
1 CAP TWICE DAILY	2000
1 Cap 4 times daily	4000





Problems with measuring exposure

- Prescribing vs. dispensing
 - Filling the prescription?
 - Intervention by pharmacist \rightarrow substitution
- Taking
 - Compliance to prescribed regimen
 - Self management plans/as needed drugs
- Reaching adequate therapeutic levels
 - CYP polymorphisms



Outcome assessment

- What is the type of outcome?
 - Hard clinical endpoint?
 - Diagnosis?
 - Test result?
- Validity and completeness of outcome event recorded in your data resource?

Problems with measuring outcomes

Problems with measuring outcomes

- Diagnosis vs. onset of disease
 - What is the actual 'index date' ?
 - What is the relevant exposure period when disease has long asymptomatic phase (cancer, dementia, BPH)
- Effect of clinical decision making process (initial diagnosis cough vs final diagnosis of a more serious outcome)

Measuring in electronic health care databases

- Health care system knowledge
 - Gatekeeper function, referrals, how is medication dispensed
- Consistency of data collection/coding principles over time
- Event date vs. event registration date

Consequences of measurement errors

- Incorrect classification of subjects with respect to exposure and/or outcome
 - \rightarrow Information bias

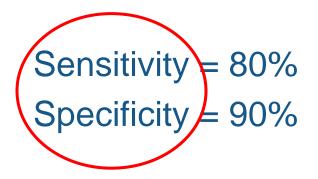
Misclassification

- Non-differential: the amount of misclassification is equal in the groups that are compared
- Differential: the amount of misclassification is not equal in the groups that are compared
- Has impact on risk estimates

- Proportion of truly exposed subjects that are classified as exposed: sensitivity
- Proportion of truly non-exposed subjects that are classified as non-exposed: specificity
- Exposure prevalence

	Cases	Controls
Exposed	80	50
Non-exposed	20	50

True Odds Ratio = (80/20)/(50/50) = 4



	Cases	Controls
Exposed	80	50
Non-exposed	20	50

Sensitivity = 80% Specificity = 90%

	Cases	Controls
Exposed	80	50
Non-exposed	20	50

Sensitivity and specificity?

Truth: Classified	Exposed	Unexposed
Exposed	а	b
Non-exposed	С	d

Sensitivity \rightarrow probability of being classified as exposed when subject is 'truly' exposed (a/a+c)

Specificity \rightarrow probability of being classified as non-exposed when subject is 'truly' non-exposed (d/b+d)

	Cases	Controls
Exposed	80	50
Non-exposed	20	50

Cases:Controls:80 * 90% = 7250 * 90% = 4520 * 80% = 1650 * 80% = 40

	Cases	Controls
Exposed	80 72+4	50 45+10
Non-exposed	20-16+8	50 40+5

Cases:Controls:80 * 90% = 7250 * 90% = 4520 * 80% = 1650 * 80% = 40

	Cases	Controls
Exposed	76	55
Non-exposed	24	45

Observed Odds Ratio = (76/24)/(55/45) = 2.6

\rightarrow underestimation of the true effect

Magnitude of bias on the Odds Ratio, true OR=4.0

Sensitivity	Specificity	Exposure prevalence	Observed OR
0.90	0.85	0.20	2.6
0.60	0.85	0.20	1.9
0.90	0.95	0.20	3.2
0.90	0.60	0.20	1.9
0.90	0.90	0.368	3.0
0.90	0.90	0.20	2.8
0.90	0.90	0.077	2.2

Magnitude of bias on the Odds Ratio, true OR=4.0

Sensitivity	Specificity	Exposure prevalence	Observed OR
0.90	0.85	0.20	2.6
0.60	0.85	0.20	1.9
0.90	0.95	0.20	3.2
0.90	0.60	0.20	1.9
0.90	0.90	0.368	3.0
0.90	0.90	0.20	2.8
0.90	0.90	0.077	2.2

Non-differential misclassification

- Expected effect is that it results in bias toward the null, i.e. underestimation of the true effect
- But.... as misclassification occurs in individuals there is some probability it may bias away from the null

Differential misclassification

- Difference in proportion of misclassification between groups that are compared
- Classic example: recall bias of exposure which is more likely to be remembered among cases then among controls
- Direction of bias can be either way

Conclusion

- Classification errors are common in epidemiological research
- Standard research practices minimize differential misclassification
- When extent of classification errors (e.g., sensitivity and specificity) are known, it is possible to back-calculate to truth
- If exact classification errors are not known, it is possible to perform sensitivity analyses to estimate a range of study results given a range of possible classification errors

