

The impact of PK/PD for clinical decisions.

Anouk E. Muller MD PhD

Clinical Microbiologist

Haaglanden MC, The Hague

Erasmus MC, Rotterdam

None

AEM Brussel 20-09-2019

Clinical desicions and antimicrobial therapy

Is there PK/PD involved?

- Which drug to use based on the indication?
 - Example urinary tract infections and nitrofurantoin
- Which drug to us based on the lab-report?
 - Example: cefuroxim S for *E coli*
- Which dose to use?

Clinical desicions and antimicrobial therapy

Is there PK/PD involved?

- Which drug to use based on the indication? Yes
 - Example urinary tract infections and nitrofurantoin
- Which drug to us based on the lab-report?
 - Example: cefuroxim S for *E coli*
- Which dose to use?

Erasmus MC Universitair Medisch Centrum Rotterdam

Yes

Yes

Clinical desicions and antimicrobial therapy <

Is there PK/PD involved?

- Which drug to use based on the indication? Yes
 - Example urinary tract infections and nitrofurantoin
- Which drug to us based on the lab-report?
 - Example: cefuroxim S for *E coli*
- Which dose to use?

Erasmus MC Universitaie Medisch Centrum Rotterdam

Yes

Yes

H+ MC

Laboratory Report

Urine culture

Escherichia coli >10^5 kve/ml

Amoxicillin	R
Amoxi/clav	R
Cefuroxim	S
Ceftazidime	S
Ciprofloxacin	

etc

Provides
Clinician/Consultant
guidelines how to
optimally treat a patient

How does the laboratory distinguish between

• Breakpoints

European committee on susceptibility testing

- Harmonisation of methods
- Harmonisation of breakpoints in Europe

Situation in 2001

E.coli vs.	cefotaxime	S <u><</u> / R>
BSAC	The United Kingdom	2 / 2
CA-SFM	France	4 / 32
CRG	The Netherlands	4 / 8
DIN	Germany	2 / 8
CLSI	U.S.A.	8 / 32
NWGA	Norway	1 / 2
SRGA	Sweden	0.5 / 1

The reference method

European Committee for Standardization Comité Européen de Normalisation Europäisches Komitee für Normung

Standardization

International Organization for 2003 20 june DIN Berlin **CEN TC140/WG10**

2004 22 april DIN Berlin Combined meeting with ISO ISO/TC 212 WG4 Vienna Agreement

2005 Vote on first draft and comments by all Member Countries

2006 Final version 27 October 2006, 8th CEN, 6th ISO meeting ISO 20776-1

2007 Final version validation ISO 20776-2.

Antimicrobial therapy in general

Efficacy of the drug

Potency of a drug (MIC) Exposure to the bug In vivo (PK)

MIC

H+ MC

> Lowest concentration with no visible growth after 18 hour incubation

AEM Brussel 20-09-2019

Mouton et al., Drug Resistance Updates 2011

zamo

1st Question:

Does the dose matter?

Probability of cure after treatment with fluconazole Oropharygeal Candidiasis n=132

Dose vs % cure

Higher dose – Lower efficacy?

Efficacy of the antimicrobial

2nd Question:

Does the Dose matter in relation to the MIC (potency?)?

Probability of cure after treatment with fluconazole Oropharygeal Candidiasis n=132

Each data point represents the proportion of patients cured within a group representing a certain AUC/MIC value

AEM Brussel 20-09-2019

Mouton et al., Drug Resistance Updates 2011

Pharmacokinetic parameters : Measures of Exposure

Pharmacokinetic parameters : Measures of Exposure

AEM Brussel 20-09-2019

time

Mouton et al. 2007 21-44 In Antimicrobial Pharmacodynamics in Theory and Clinical Practice

AEM Brussel 20-09-2019

Mouton et al., Drug Resistance Updates 2011

- randomized, double-blind phase 3 clinical trial (NCT00210964):
 - comparing the efficacy of ceftobiprole with the combination CAZ and linezolid
 - Ceftazidime 3dd 2 gr 2h infusion
 - Extensive and sparse sampling of ceftazidime

N=390 patients included

NO clear dose response relationship

Muller et al, JAC 2013 68:900-906

Ceftazidime in patients with nosocomial pneumonia

- randomized, double-blind phase 3 clinical trial (NCT00210964):
 - comparing the efficacy of ceftobiprole with the combination CAZ and linezolid
 - Ceftazidime 3dd 2 gr 2h infusion
 - Extensive and sparse sampling of ceftazidime
 - MICs of strains

Exposure-response Emax model

microbiological eradication

- Individual exposures to CAZ
- Categorised (%*f*T>MIC per 10%)
- Eradication rate per group
- 154 patients

Ceftazidime in patients with nosocomial pneumonia

CART analysis

 to differentiate between lower and higher response rate

%*f*T>MIC breakpoint = 44.9 %

P<0.0001

% <i>f</i> T>MIC	Success	Failure
<u>></u> 44.9	83 (90.2%)	9 (9.8%)
<44.9	31 (50%)	31 (50%)

Muller et al, JAC 2013 68:900-906

AEM Brussel 20-09-2019

Muller et al, JAC 2013 68:900-906

Erasmus MC

zafins

Probability plot of the logistic regression analysis for <u>ceftobiprole</u> showing the relationship between %*f*T>MIC and probability of cure at TOC – nosocomial pneumonia

Muller et al, AAC 2014 58:2512

The PK/PD relationship is based on MIC AND PK exposure

Optimize dose based on:

- Exposure response relationship
- PK characteristics
- MIC (distribution)

Report an advise to the clinic

 Is there a high probability that the therapy will work or not?

Summary of

- MIC measure of potency
- PK/PD indices determined by fractionation studies
 - » AUC/MIC: aminoglycosides, vancomycin
 - » %fT>MIC: beta-lactams
 - » Peak/MIC: possibly colistin (?)
- How much exposure of the antibiotic to the bug is needed to achieve antibacterial effect?
 - From animal-studies a minimal value for these indices is determined.

Site specific breakpoints?

- There are some site specific breakpoints:
 - Concentrations reached in CSF are much lower compared to urine or in the lungs

Streptococcus pneumoniae

Expert Rules and Intrinsic Resistance Tables

MIC determination (broth microdilution according to ISO standard 2 Medium: Mueller-Hinton broth + 5% lysed horse blood and 20 mg/L β-N Inoculum: $5x10^5$ CFU/mL Incubation: Sealed panels, air, $35\pm1^{\circ}$ C, $18\pm2h$ Reading: Unless otherwise stated, read MICs at the lowest concentratio inhibits visible growth. Quality control: *Streptococcus pneumoniae* ATCC 49619. For agents r EUCAST QC Tables.

Penicillins ^{1,2}	MIC breakpo (mg/L)					
	S ≤	R >				
Benzylpenicillin (indications other than meningitis) ³	0.06 ¹	2 ¹				
Benzylpenicillin (meningitis)	0.06 ¹	0.06 ¹				

	BSAC	CA-SFM	CRG	DIN	NWGA	SRGA			
Most common dose	250-500 mg x 3 oral 1 g x 3 iv	500 mg x 3 oral 1 g x 2 iv	500 mg-1 g x 3 oral 1 g x 3 – 4 iv	500 mg-1 g x 3 oral	500 mg x 3 oral	500 mg-1 g x 3 oral			
Maximum dose schedule	2 g x 6 iv	3 g x 6 iv	2 g x 6 iv	2 g x 6 iv	1 g x 3-4	1 g x 3-4			
Available formulations	oral, iv	oral, iv	oral, iv	oral, iv	oral	oral			

AEM Brussel 20-09-2019 Amoxicillin Rationale for the EUCAST clinical breakpoints, version 1.0 22nd November 2010

PK and MCS in breakpoint setting

Not only for an average patient, but for the population

Perform Monte Carlo simulation with a population model representing the average patient with different dosing regimen.

The target needs to be reached in 95-99% of the population

NB: Garbage in is Garbage out The models used for breakpoint setting are average patients: NOT ICU, NOT sepsis, NOT obesity etc

Klebsiella and ceftazidime

	0.002	0.004	0.008	0.016	0.032	0.064	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	ECOFF
<u>Klebsiella pneumoniae</u>	0	0	10	9	89	592	1346	1425	611	281	145	88	104	113	146	136	92	112	27	0.5
<u>Klebsiella spp</u>	0	0	0	15	125	343	351	158	71	43	13	3	3	0	2	0	1	0	0	0.5

Normal range ends at 0.5 mg/L

Strains with MICs up to 0.5 mg/L can be called susceptible with this dose.

If you look at the population, there is a high likelihood on therapeutic success.

EUCAST Definitions from januari 2019

- S Susceptible, standard dosing regimen: A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.
- R Resistant: A microorganism is categorised as "Resistant" when there is a high likelihood of therapeutic failure even when there is increased exposure.

H+ MC

EUCAST Definitions from januari 2019

- S Susceptible, standard dosing regimen: A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.
- I Susceptible, increased exposure*: A microorganism is categorised as "<u>Susceptible</u>, <u>Increased exposure</u>*" when there is a high likelihood of therapeutic success because exposure to the agent is increased by adjusting the dosing regimen or by its concentration at the site of infection.
- R Resistant: A microorganism is categorised as "Resistant" when there is a high likelihood of therapeutic failure even when there is increased exposure.
- Susceptible, Increased exposure
 - Increased exposure: urine
 - Prescribe ceftazidime 3dd 2 gram in stead of 3dd 1 gram